Example 3. A rectangular box is to be made from $100 \mathrm{~m}^{2}$ of cardboard. Find the maximum volume of such a box.

We want to maximize $V=l_{\omega} h$ where $2 l \omega+2 l h+2 \omega h=100$ (1)
and $l, w, h>0$
Solve for h in (1): $2 l h+2 \omega h=100-2 l \omega$

$$
\Rightarrow h=\frac{100-2 l \omega}{2 l+2 \omega}=\frac{50-l \omega}{l+\omega}
$$

\Rightarrow We want to maximize $V=\frac{l w(50-l w)}{l+w}=\frac{50 l w-l^{2} w^{2}}{l+\omega} \leftarrow$ define

$$
\begin{aligned}
f_{l}(l, \omega) & =\frac{(l+\omega)\left(50 \omega-2 l \omega^{2}\right)-\left(50 l \omega-l^{2} \omega^{2}\right)(1)}{(l+\omega)^{2}} \\
& =\frac{5 D l \omega+50 \omega^{2}-2 l^{2} \omega^{2}-2 l \omega^{3}-50 l \omega+l^{2} \omega^{2}}{(l+\omega)^{2}} \\
& =\frac{50 \omega^{2}-l^{2} \omega^{2}-2 l \omega^{3}}{(l+\omega)^{2}}=\frac{\omega^{2}\left(50-l^{2}-2 l \omega\right)}{(l+\omega)^{2}}
\end{aligned}
$$

In a similar fashion, $f_{\omega}(l, \omega)=\frac{l^{2}\left(50-\omega^{2}-2 l \omega\right)}{(l+\omega)^{2}}$

Find critical points:

$$
\left.\begin{array}{lll}
-\omega^{2}\left(l^{2}+2 l \omega-50\right)=0^{(1)} \\
-l^{2}\left(\omega^{2}+2 l \omega-50\right)=0^{(2)}
\end{array}\right\} \begin{array}{lll}
\text { (1) } \Rightarrow=0^{(3)} & \text { or } & l^{2}+2 l \omega-50=0^{(4)} \\
\text { (2) } & l=0^{(5)} & \text { or }
\end{array} \omega^{2}+2 l \omega-50=0^{(6)}
$$

(3) + (5) $\Rightarrow w=0, l=0$
(3) + (6) $\Rightarrow 0+2 l(0)-50=0 \Rightarrow$ impossible
(4) + (5) $\Rightarrow 0+2 w(0)-50=0 \Rightarrow$ impossible
(4) + (b) \Rightarrow Solve for $2 l u$

$$
\Rightarrow l^{2}-50=\omega^{2}-50 \Rightarrow l=\omega
$$

Sub into (4) $\Rightarrow 3 l^{2}=50 \Rightarrow l=\sqrt{\frac{50}{3}}$

$$
\Rightarrow w=\sqrt{\frac{50}{3}}, l=\sqrt{\frac{50}{3}}
$$

\Rightarrow critical points : $\left(\sqrt{\frac{50}{3}}, \sqrt{\frac{50}{3}}\right) \quad$ (since $\left.l, \omega>0\right)$
Second derivatives test? Instead...

By the physical nature of the problem, there must be an absolute maximum, which must also be a local maximum, and so must occur at a critical point!

$$
\Rightarrow f\left(\sqrt{\frac{50}{3}}, \sqrt{\frac{50}{3}}\right)=\frac{\frac{50}{3}\left(50-\frac{50}{3}\right)}{2 \sqrt{\frac{50}{3}}}=\frac{\frac{50}{3} \cdot \frac{100}{3}}{2 \sqrt{\frac{50}{3}}}=\frac{50}{3} \sqrt{\frac{50}{3}} \text { is an absolute } \quad \text { maximum }
$$

\Rightarrow The max volume of a box made of $100 \mathrm{~cm}^{3}$ of cardboard. is $\frac{50}{3} \sqrt{\frac{50}{3}} \mathrm{~cm}^{3}$.

